Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In their article “Coupling at a distance HDG and BEM” , Cockburn, Sayas and Solano proposed an iterative coupling of the hybridizable discontinuous Galerkin method (HDG) and the boundary element method (BEM) to solve an exterior Dirichlet problem. The novelty of the numerical scheme consisted of using a computational domain for the HDG discretization whose boundary did not coincide with the coupling interface. In their article, the authors provided extensive numerical evidence for convergence, but the proof of convergence and the error analysis remained elusive at that time. In this article we fill the gap by proving the convergence of a relaxation of the algorithm and providing a priori error estimates for the numerical solution.more » « less
-
In magnetic confinement fusion devices, the equilibrium configuration of a plasma is determined by the balance between the hydrostatic pressure in the fluid and the magnetic forces generated by an array of external coils and the plasma itself. The location of the plasma is not known a priori and must be obtained as the solution to a free boundary problem. The partial differential equation that determines the behavior of the combined magnetic field depends on a set of physical parameters (location of the coils, intensity of the electric currents going through them, magnetic permeability, etc.) that are subject to uncertainty and variability. The confinement region is in turn a function of these stochastic parameters as well. In this work, we consider variations on the current intensities running through the external coils as the dominant source of uncertainty. This leads to a parameter space of dimension equal to the number of coils in the reactor. With the aid of a surrogate function built on a sparse grid in parameter space, a Monte Carlo strategy is used to explore the effect that stochasticity in the parameters has on important features of the plasma boundary such as the location of the x-point, the strike points, and shaping attributes such as triangularity and elongation. The use of the surrogate function reduces the time required for the Monte Carlo simulations by factors that range between 7 and over 30.more » « less
An official website of the United States government
